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Abstract: Statistical modelling and experimental design (SMED) are essential tools for the development and 
understanding of complicated products and processes. SMED allows efficient experimentation in which all or a large 
subset of factors are together varied over a set of experiments, in contrast to the traditional approach of varying only one 
at a time. 

An overview of the SMED methodology and the generalization of statistical design to multivariate design is presented. 
The following examples illustrating the use of these methods are discussed: (1) use of factorial designs to improve drug 
solubility; (2) testing the robustness of an analytical method; and (3) use of multivariate design to select the solvent in 
analytical method development. 
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Introduction 

Measurements and experiments are made in 
pharmaceutical and biomedical analysis to 
determine concentrations of drug compounds 
and metabolites in organs and tissues of 
animals and humans as a function of dose, 
time, and other factors. Analytical measure- 
ments in pharmaceutical quality control in- 
volve measuring impurity levels, rate of de- 
gradation, stability, etc. 

Chemical analysis requires analytical 
methods that are accurate, selective and 
precise. In practice, this involves developing 
methods of work-up and analysis (e.g. HPLC, 
FT-IR, etc.) that optimize recovery, chro- 
matography peak separation, etc. In addition, 

the robustness of the method is essential, i.e. 
the results of the method should not be 
significantly affected by small variations of the 
controlled factors nor uncontrolled ‘environ- 
mental’ factors, such as ambient temperature, 
ambient humidity, brand of analytical re- 
agents, etc. 

Review of Statistical Experimental Design 

All method development and optimization 
involves experimentation. An interesting 

question is how to make this experimentation 
achieve the stated objective as accurately and 
efficiently (i.e. with few experiments) as poss- 
ible. The answer is easiest to understand if we 
see experimentation as exploring a space de- 
fined by the factors that are changed during the 
investigation (Fig. 1). In this space, the exper- 
imental region is defined by the lower and 
upper levels of each factor. One experiment 
corresponds to a point in this region, and for 
each such point, the value(s) of one or several 
responses, Y (e.g. percentage recovery, peak 
separation), is measured, as shown in Fig. 2. 

To understand how the factors X affect the 
responses Y, a map of the experimental region 
is constructed, which describes how the 

value(s) of the response(s), Y, varies when the 
values of the factors, X, are changed. 

In order to obtain the best map, i.e. a map 
that best approximates the variation of the 
responses as a function of the factors, it is 
necessary to carry out a set of experiments that 
are representative of the region. In 1925 Fisher 
solved the problem of efficiently selecting a set 
of best experiments [l]. From this work grew 
the concept of statistical experimental design 

(SED) [I, 21. 
Experimental design involves selecting the 

best set of points in the experimental space 
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One experiment 
is a ooint 

Figure 1 
Two-space of two factors (pH and T). Each experiment is a 
point in this space. 

Figure 2 
Two factors (,x) and one response (y) form a three- 
dimensional space or a 2-space (X) + a l-space (Y). 

under the following constraints: (1) the size 
and shape of the experimental region; (2) the 
number of desired experimental runs, N; and 
(3) the type of model used for constructing the 
‘map’, with the objective of obtaining a 
precise and accurate map of the response. 

Orthogonal designs (factorial designs) 
With the orthogonal designs of Fisher [ 1, 21, 

an efficient strategy for screening many factors 
to find the dominant factors was developed. 
These include the full and fractional factorials 
at two levels (see Figs 3 and 4) and the multi- 
level fractional factorials (family of Latin 
squares). With these balanced orthogonal 
designs, the estimated factor effects are un- 
correlated with each other. These designs can 
also be used to estimate interactions between 
factors. 

Figure 3 
Full factorial design in three factors corresponds to the 
eight corners of a cube. 

Figure 4 
Fractional factorial design is a balanced selection of a 
fraction of a full factorial design, of the corners of a hyper- 
cube. 

As a typical example of fractional factorial 
design in pharmaceutical analysis, consider a 
problem encountered in the development of a 
method for the analysis of a drug. The ob- 
jective is to improve the solubility of a drug. 
The goal of the first screening phase, is to 
identify the factors affecting solubility. Four 
factors were identified as possibly being im- 
portant (1) quantity of solvent (butanol); (2) 
quantity of detergent (sodium dodecyl sulph- 
ate; SDS), (3) . ionic strength, and (4) quantity 
of enhancer. 

A linear model including interactions (1 + 4 
+ 6 terms) was proposed, and a fractional 
factorial design with 16 runs + 3 centre points 
was used. After the solubility (y) for the 19 
different experimental conditions given by the 
design was measured, multiple regression was 
used to fit the model to the data. One strong 
outlier was found in a less interesting part of 
the region. After removal of this outlier, a 
linear model was found to approximate well 
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the response. The variation of the response in 
the region showed no curvature and no import- 
ant interactions. Only the quantity of solvent 
and the ionic strength had large effects. 

Orthogonal designs 
A drawback of the fractional factorial 

designs in the screening of many factors is the 
large increase in the number of runs; from 8 to 
16 to 32 to 64. If, for instance, one wishes to 
screen 16 factors, a fractional factorial in 32 
runs is needed, while if the number of screened 
factors is 15, a 16-run design would suffice 

(albeit barely). 
Plackett-Burman (PB) in 1950 developed 

orthogonal designs with N being multiples of 
four, e.g. 12, 20, 24, 28, with which one can 
screen up to 9, 17, 21, and 25 factors, respec- 
tively [2]. Hence, with 16 factors to be screened, 
a PB design with 20 runs would suffice. 

The drawback of PB designs is that they are 
resolution III designs, and allow only for the 
estimation of main effects (two-factor inter- 
actions are confounded with each other and 
with main effects). Their advantage is their 
efficiency for screening many variables. They 
are therefore good designs for robustness 
testing. 

Robustness testing is an interesting appli- 
cation of screening designs, providing infor- 
mation on those controlled factors that have 
the greatest influence on the variability (i.e. 
lack of robustness) of a process. For these 
applications, linear models without inter- 
actions are usually sufficient because of the 
very small ranges of the factors. PB designs are 
suitable for the investigation of the robustness 
(i.e. effects of small changes in the factors) of 
analytical methods around the ‘best con- 
ditions’. Factors sensitive to small changes 
(causing large effects) should be ‘better con- 
trolled’ or conditions selected for these factors 
that are less sensitive. 

For each controlled factor one needs to 
know its nominal value (i.e. the value at which 
it is controlled according to the method specifi- 
cations) and the interval within which it can be 
controlled. 

As an example, the testing of the robustness 
of an HPLC analytical method for aspirin is 
discussed. The following are the K = 5 factors, 
and the experimental region, selected as the 
best conditions (nominal values) + controlled 
interval of the factors: 

acid concentration: 25 + 2%; 
acid type: 1 ? ?? (depends on objective); 

flow rate: 1.5 + 0.1 ml min-‘; 
temperature: 40 f 5°C; 
wavelength: 295 + 5 nm. 

An eight-run Plackett-Burman design with 
three centre points was used, with the low and 
high levels = nominal + controlled interval, 
and the centre point = nominal levels. A 
linear model (six terms = five linear terms + 
constant term) was used to compute effects and 
find the factors with the largest effects. 
Changes in these factors cause unacceptable 
changes in the results of the method. Hence, 
these factors should be better controlled. 
Alternatively, one can seek different con- 
ditions where the HPLC method is less sensi- 
tive to these changes. 

Classical response surface modelling (RSM) 
designs 

The third type of designs that are very useful 
in analytical work are the classical RSM 
designs, the so-called composite designs, 
developed around 1950 [2]. They are used for 
up to five (or in rare cases six) factors. They 
allow good estimation of the parameters of the 
quadratic model and the adequacy of the 
model to be assessed (Fig. 5). 

The application of an RSM design in testing 
the robustness of a method is illustrated by a 
test of the dissolution of tablets under the 
following conditions: temperature, 38°C; 
volume, 700 ml; stirrer speed, 75 rpm; pH, 4.0. 
The responses (i.e. characteristics) of interest 

are measurements of the percentage of the 
content of active ingredient released at 1, 2, 6 
and 10 h. 

The questions are: is the testing method 
robust to: (1) changes in pH that occur in the 
human body; from 1.2 to 6.8; (2) small changes 
in temperature, e.g. f 1°C due to equipment; 
(3) small changes in volume and stirrer rotation 
speed? 

Because of the large variation in pH, a 
quadratic model is chosen. The experimental 
region selected is: volume, 500-900 ml; tem- 
perature, 37-39°C; rotation speed, 50-100 
rpm; and pH, 1.2-6.8. 

A central composite face (CCF) design was 
used (N = 17 runs). By using partial least 
squares (PLS, a generalized regression 
method) [3] to fit the quadratic model to the 
data, three significant PLS components were 
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Figure 5 
A statistical design (central composite) in two factors. This 
design supports a quadratic polynomial model: 

y = c,, - c,x, + C$z + C,,X12 + c2zxz2 + c,*x,xz + E. 

Table 1 

R2 (%) QZ W) 

Yl (1 h) 91 72 
Y2 (2 h) 92 75 
Y3 (6 h) 89 65 
Y4 (10 h) 86 50 

obtained, explaining 64, 23 and 4% (in all 
91%) of the variance of Y. The amount of 
explained (R*) and predicted (Q*) variance for 
the four responses are listed in Table 1 and 
indicate good fit and predictive power for the 
quadratic model. 

In conclusion, good models were obtained 
for all four responses. The factors causing 
largest variation were rotation speed, tempera- 
ture and pH. The variation of the release of the 
drug from the tablet after 10 h, as a function of 
pH, adjusted for the other factors, is curved 
(i.e. not rectilinear). The release at 10 h is 
maximum for pH = 4.4. However, the largest 
variation caused by the variation in the factors 
was still within acceptable ranges for all four 
responses. Hence, the analytical method was 
considered to be robust and required no 
changes to its conditions. 

Mixture designs (1955) 
When experiments are made that involve 

mixtures, special types of designs must be used 
[8] because of the mixture constraint: ~xi = 
constant (usually 1.0). With no additional 
constraints, i.e. all mixture factors can vary 
between 0.0 and 1.0, the region is a hyper- 
simplex (Fig. 6), and the classical mixture 

Figure 6 
A mixture region is a (hyper)-simplex. A simplex centroid 
design in four factors is shown here. 

designs are: (1) axial designs for screening; and 
(2) simplex lattice and simplex centroid for 
RSD (Fig. 6). 

Most commonly, however, there are ad- 
ditional constraints, e.g. factors have upper 
and/or lower levels (i.e. they do not vary 
between 0 and 100%). For example, the 
content of glycerine in a cream should be 
between 0.25 and 0.40% of the total concen- 
tration. The experimental region is then an 
irregular polyhedron volume inside the hyper- 
simplex (Fig. 7) and D-optimal designs are 
used (see below) to select a subset of the 
extreme vertices, edge centres, face centres 
and the over-all centroid. Richer designs are 
used for RSMs (in few factors) than for 
screening of many factors. 

D-Optimal designs 
This is the last class of designs commonly 

used in practice. These are computer gener- 
ated with the objective of maximizing the 
hyper-volume of the design-points [Det(X’X)]. 

I 1 

I I 

Figure 7 
D-Optimal designs put design points on the border of the 
experimental region at the extreme vertices (intersections 
of constraint borders and experimental region). 
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These designs are applicable for constrained 
regions, for designs with very small numbers of 
runs, multi-level designs, and whenever there 
is no classical design. 

Taguchi designs 
These designs are used when the objective is 

to optimize response(s) while at the same time 
minimizing their variability. Taguchi designs 
have inner and outer arrays, where the latter 
are used to estimate the variability in each 
inner array point. 

The responses with these designs are called 
performance statistics. The most commonly 
used are the mean and standard deviation of 
the measured y-values of the inner array. The 
inner arrays are classical designs (e.g. frac- 
tional factorials), while the outer arrays are 
either statistical designs or just repeats under 
the same conditions. 

Taguchi designs are used in manufacturing 
for developing robust products or processes. 
Because of the large number of required 
experimental runs, they are rarely used in the 
pharmaceutical industry. 

Multivariate Design 

With most complicated systems, one has 
many X-variables, many of which cannot be 
individually manipulated or controlled. A 
typical case is one in which there is a quali- 
tative change that potentially influences many 
properties of the system. Examples are selec- 
tion of solvent, substituent in a chemical 
compound, batch of raw material, etc. One can 
then make a multivariate characterization to 
quantify the qualitative change, and use scales 
T derived from a multivariate analysis, prin- 
cipal component analysis (PCA) or PLS [3- 
10], to represent the underlying “real” factors. 

Thereafter one tries to span the subspace of 
the ‘latent variables’ T by means of a design in 
these scores, i.e. a multivariate design (MV), 
followed by a PLS modelling [4, 51 of the 
resulting data. 

The concept of MV design [6] is illustrated 
with an application from the pharmaceutical 
industry in which the objective of the study was 
to improve the solubility of a drug. A first 
screening experiment carried out with butanol 
as solvent and SDS as detergent, identified the 
quantity of solvent and the ionic strength as 
having effects on the solubility. The settings of 

the factors yielding optimal solubility were 

selected. 
A second study was undertaken to further 

improve the solubility of the drug. The 
question of interest was: can one improve the 
solubility by selecting a better solvent and 
detergent? As there is a large number of 
solvents and detergents available, it is imposs- 
ible to investigate them all. Consequently three 
or four solvents should be selected that are 
representative of the range of solvents. Multi- 
variate characterization of the set of 103 
solvents selected, quantifies the variation 
spanned by the solvents. The method consists 
of measuring several (10 in this study) relevant 
properties such as molecular weight, Log P, 
boiling point, melting point, etc., of every 
solvent. A PCA analysis is performed on the 
resulting (103 by 10) matrix. The PCA analysis 
resulted in two PCs. The two scores tl and t2 
are the best summary of the 10 measured 
properties. The score plot of tl vs t2 provides a 
map of the variation of the solvents [7]. The 
three following solvents were selected from the 
PC-score map [7] to span the sub-space of 
solvents with desired properties; butan-l-01, 
glycol, and sulphanol. The same method was 
used to select the following three deter- 
gents; SDS, cetyltrimethylammonium bromide 
(CTAB) and Breen. A statistical experimental 
design calculation was carried out with the 
following six factors: ionic strength, quantity of 
sample, solvent type (3), detergent type (3), 
quantity of solvent, quantity of detergent. A 
linear model in all the factors was selected, and 
a D-Optimal design made with 18 runs + 2 
replicates. The measured response was log 
solubility. 

The PLS analysis resulted in 2 PLS com- 
ponents, explaining 90% of Y. Q2 (PRESS) = 
72%. The linear model was found to be a good 
representation of the variation of the response 
and showed that butan-l-01 has the largest 
effect on solubility and was the best of the 
three solvents. It was recommended that 
solvents near butan-l-01 on the PC map should 
also be investigated. Breen was found to be the 
best detergent. Only mild effects were found 
for ionic strength and quantity of solvent, these 
effects being partly masked by the large vari- 
ation due to the three different solvents. 

Experience with modelling and design indi- 
cates that in the future there will be increasing 
demand for more flexible computer generated 
designs that optimize several criteria: (1) 
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volume of design \X’X\; (2) ‘Bias check 
points’ (interior points); (3) ‘enriching 
points’ (richer models supported); and (4) 
larger candidate sets (and ‘continuous’). 

The increasing complexity of the systems 
investigated, corresponding to increasing 
numbers of factors, demand super-saturated 
designs handling large numbers of factors 
(considerably greater than 30) and hierarchical 
strategies to deal with hundreds of factors. 

Conclusions 

Modelling, design and (multivariate) 
analysis provide the best available technology 
for essential elements of research and develop- 
ment. However, the application of these tools 
is not always easy and automatic, and requires 
a combination of chemical and statistical 
knowledge. Modelling, design and multivariate 
analysis are, for the pharmaceutical industries, 
an investment. It costs time and money to 
educate and train the researchers; in return the 

methods provide an approach that works well 
in solving research and development problems. 
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